Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.259
Filtrar
1.
Food Chem ; 448: 139208, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608400

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is remarkably efficacious in inhibiting the browning of red meat. We therefore propose a hypothesis that EGCG forms complexes with myoglobin, thereby stabilizing its structure and thus preventing browning. This study investigated the interaction mechanism between EGCG and myoglobin. EGCG induced static quenching of myoglobin. Noncovalent forces, including hydrogen bonds and van der Waals, primarily governing the interactions between myoglobin and EGCG. The interactions primarily disrupted myoglobin's secondary structure, thus significantly reducing surface hydrophobicity by 53% (P < 0.05). The modification augmented the solubility and thermal stability of myoglobin. The radius of gyration (Rg) value fluctuated between 1.47 and 1.54 nm, and the hydroxyl groups in EGCG formed an average of 2.93 hydrogen bonds with myoglobin. Our findings elucidated the formation of stable myoglobin-EGCG complexes and the myoglobin-EGCG interaction, thus confirming our initial hypothesis.


Assuntos
Catequina , Catequina/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Mioglobina , Mioglobina/química , Catequina/química , Ligação de Hidrogênio , Animais , Ligação Proteica
2.
Analyst ; 149(8): 2388-2398, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462973

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a versatile bioanalytical technique for protein analysis. Since the reliability of HDX-MS analysis considerably depends on the retention of deuterium labels in the post-labeling workflow, deuterium/hydrogen (D/H) back exchange prevention strategies, including decreasing the pH, temperature, and exposure time to protic sources of the deuterated samples, are widely adopted in the conventional HDX-MS protocol. Herein, an alternative and effective back exchange prevention strategy based on the encapsulation of a millimeter droplet of a labeled peptide solution in a water-immiscible organic solvent (cyclohexane) is proposed. Cyclohexane was used to prevent the undesirable uptake of water by the droplet from the atmospheric vapor through the air-water interface. Using the pepsin digest of deuterated myoglobin, our results show that back exchange kinetics of deuterated peptides is retarded in a millimeter droplet as compared to that in the bulk solution. Performing pepsin digestion directly in a water-in-oil droplet at room temperature (18-21 °C) was found to preserve more deuterium labels than that in the bulk digestion with an ice-water bath. Based on the present findings, it is proposed that keeping deuterated peptides in the form of water-in-oil droplets during the post-labelling workflow will facilitate the preservation of deuterium labels on the peptide backbone and thereby enhance the reliability of the H/D exchange data.


Assuntos
Pepsina A , Água , Deutério/química , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Medição da Troca de Deutério/métodos , Peptídeos/química , Hidrogênio/química , Mioglobina/química , Cicloexanos
3.
Int J Biol Macromol ; 264(Pt 1): 130416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428776

RESUMO

Carbon nanomaterials (CNMs), including carbon quantum dots (CQDs), have found widespread use in biomedical research due to their low toxicity, chemical tunability, and tailored applications. Yet, there exists a gap in our understanding of the molecular interactions between biomacromolecules and these novel carbon-centered platforms. Using gelatin-derived CQDs as a model CNM, we have examined the impact of this exemplar nanomaterial on apo-myoglobin (apo-Mb), an oxygen-storage protein. Intrinsic fluorescence measurements revealed that the CQDs induced conformational changes in the tertiary structure of native, partially unfolded, and unfolded states of apo-Mb. Titration with CQDs also resulted in significant changes in the secondary structural elements in both native (holo) and apo-Mb, as evidenced by the circular dichroism (CD) analyses. These changes suggested a transition from isolated helices to coiled-coils during the loss of the helical structure of the apo-protein. Infra-red spectroscopic data further underscored the interactions between the CQDs and the amide backbone of apo-myoglobin. Importantly, the CQDs-driven structural perturbations resulted in compromised heme binding to apo-myoglobin and, therefore, potentially can attenuate oxygen storage and diffusion. However, a cytotoxicity assay demonstrated the continued viability of neuroblastoma cells exposed to these carbon nanomaterials. These results, for the first time, provide a molecular roadmap of the interplay between carbon-based nanomaterial frameworks and biomacromolecules.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Mioglobina/química , Gelatina , Pontos Quânticos/química , Oxigênio
4.
Anal Chem ; 96(10): 4146-4153, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427846

RESUMO

Unraveling the mechanism by which native proteins are charged through electrospray ionization (ESI) has been the focus of considerable research because observable charge states can be correlated to biophysical characteristics, such as protein folding and, thus, solution conformation. Difficulties in characterizing electrosprayed droplets have catalyzed the use of molecular dynamics (MD) to provide insights into the mechanisms by which proteins are charged and transferred to the gas phase. However, prior MD studies have utilized metal ions, primarily Na+, as charge carriers, even though proteins are primarily detected as protonated ions in the mass spectra. Here, we propose a modified MD protocol for simulating discrete Grotthuss diffuse H3O+ that is capable of dynamically altering amino-acid protonation states to model electrospray charging and gaseous ion formation of model proteins, ubiquitin, and myoglobin. Application of the protocol to the evaporation of acidic droplets enables a molecular perspective of H3O+ coordination and proton transfer to/from proteins, which is unfeasible with the metal charge carriers used in previous MD studies of ESI. Our protocol recreates experimentally observed charge-state distributions and supports the charge residue model (CRM) as the dominant mechanism of native protein ionization during ESI. Additionally, our results suggest that protonation is highly specific to individual residues and is correlated to the formation of localized hydrated regions on the protein surface as droplets desolvate. Considering the use of discrete H3O+ instead of Na+, the developed protocol is a necessary step toward developing a more comprehensive model of protein ionization during ESI.


Assuntos
Simulação de Dinâmica Molecular , Prótons , Espectrometria de Massas por Ionização por Electrospray/métodos , Mioglobina/química , Íons/química , Gases/química
5.
Nature ; 626(8000): 905-911, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355794

RESUMO

High-intensity femtosecond pulses from an X-ray free-electron laser enable pump-probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer1,2. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore3-17. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern18,19 whether this experimental approach20 allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions18,19. Here we describe ultrafast pump-probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics21) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump-probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump-probe experiments20 such that mechanistically relevant insight emerges.


Assuntos
Artefatos , Lasers , Mioglobina , Cristalografia/instrumentação , Cristalografia/métodos , Elétrons , Mioglobina/química , Mioglobina/metabolismo , Mioglobina/efeitos da radiação , Fótons , Conformação Proteica/efeitos da radiação , Teoria Quântica , Raios X
6.
J Inorg Biochem ; 252: 112459, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38181613

RESUMO

C-H bond amination is an effective way to obtain nitrogen-containing products. In this work, we demonstrate that myoglobin reconstituted with iron porphycene (rMb(FePc)) catalyzes intramolecular C(sp3)-H bond amination of arylsulfonyl azides to yield corresponding sultam analogs. The total turnover number of rMb(FePc) is up to 5.7 × 104 for the C-H bond amination of 2,4,6-triisopropylbenzenesulfonyl azide. Moreover, rMb(FePc) exhibits higher selectivity for the desired C-H bond amination than the competing azide reduction compared to native myoglobin. Kinetic studies reveal that the kcat value of rMb(FePc) is 4-fold higher than that of native myoglobin. Furthermore, H64A, H64V and H64I mutants of rMb(FePc) enhance the turnover number (TON) and enantioselectivity for the C-H bond amination of 2,4,6-triethylbenzenesulfonyl azide. The present findings indicate that iron porphycene is an attractive artificial cofactor for myoglobin toward the C-H bond amination reaction.


Assuntos
Ferro , Mioglobina , Porfirinas , Ferro/química , Mioglobina/química , Aminação , Azidas/química , Cinética , Catálise
7.
Food Chem ; 441: 138332, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38183722

RESUMO

The impact of oxidized myoglobin (Mb) on myofibrillar protein (MP) oxidation and water retention was investigated. Results showed that the oxidation of Mb increased with increasing concentration of oxidized linoleic acid (OLA). In the presence of 100 mmol/L OLA, hemin iron decreased by 62.07 % compared to the control group. Further investigation showed that mild oxidation of Mb (≤10 mmol/L OLA) increased the water retention and the absolute value of the zeta potential of MP, whereas excessive oxidation (>10 mmol/L OLA) decreased these properties. With the increase of Mb oxidation, the carbonyl content in MP increased, and α-helices changed to random helix. And the tertiary structure changed. Pearson correlation analysis suggested that oxidized Mb affected the water retention of MP, which was closely related to hemin iron and non-hemin iron. In conclusion, OLA induced Mb oxidation, further promoted MP oxidation and affected its water retention.


Assuntos
Hemina , Mioglobina , Mioglobina/química , Hemina/química , Oxirredução , Ferro , Água
8.
Food Chem ; 441: 138317, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38199102

RESUMO

The bright red color of Parma ham is mainly derived from zinc protoporphyrin IX (ZnPP), which exists in both water-soluble and insoluble states. Water-soluble ZnPP mainly binds to hemoglobin, however, the presence of water-insoluble ZnPP remains unexplained. Therefore, we aimed to elucidate how ZnPP exists in a water-insoluble state by focusing on its binding substance. Depending on the skeletal muscle, water-insoluble ZnPP comprised 30-50% of total ZnPP. The ZnPP water extractability was positively correlated with muscle pH. Water-insoluble ZnPP was extractable with a high-pH solution and existed as a complex with myoglobin or hemoglobin; nevertheless, myoglobin-binding ZnPP was more abundant. Furthermore, the water solubility of the myoglobin globin moiety at pH 5.5-6.0 was reduced by ZnPP binding. These results suggest that water-insoluble ZnPP mainly exists as a ZnPP-Mb complex, with low solubility attributed to the low pH of the ham.


Assuntos
Mioglobina , Carne de Porco , Mioglobina/química , Água , Protoporfirinas/química , Hemoglobinas , Concentração de Íons de Hidrogênio
9.
Food Chem ; 442: 138410, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219566

RESUMO

Myoglobin (Mb) responsible for meat color is easily oxidized resulting in meat discoloration. Here, betanin red (BR), as a natural pigment and antioxidant, was chosen for enhancing redness and inhibiting oxidation. Multiple spectroscopies, isothermal titration calorimetry and molecular docking demonstrated that BR changed the microenvironment of heme group and amino acid residues of Mb, inhibited the oxidation of oxymyoglobin. The main interaction force was hydrogen bond and one variable binding site provided a continuous protective barrier to realize antioxidation. The combination of antioxidation with the inherent red color of BR offered dual color protection effect on processed beef with the addition amount of 0.2 % BR. BR treatment enhanced the redness by 25.59 âˆ¼ 53.24 % and the sensory acceptance by 4.89 âˆ¼ 14.24 %, and decreased the lipid oxidation by 0.58 âˆ¼ 15.92 %. This study paves a theoretical basis for the application of BR and its structural analogues in meat color protection and other quality improvement.


Assuntos
Mioglobina , Carne Vermelha , Animais , Bovinos , Mioglobina/química , Antioxidantes/metabolismo , Simulação de Acoplamento Molecular , Betacianinas , Carne/análise , Oxirredução , Cor , Carne Vermelha/análise
10.
J Phys Chem B ; 128(3): 676-683, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38197901

RESUMO

Addition of sugars such as sucrose to aqueous protein solutions generally stabilizes proteins against thermal denaturation by preferential exclusion of sugars from proteins (preferential hydration of proteins). In this study, we investigated the effect of sucralose, a chlorinated sucrose derivative, on protein stability and preferential solvation. Circular dichroism and small-angle X-ray scattering measurements showed that sucrose increased the denaturation temperature of myoglobin and was preferentially excluded from the protein, whereas sucralose decreased the denaturation temperature of myoglobin and was preferentially adsorbed to the protein. No clear evidence was obtained for the indirect effects of sucralose on protein destabilization via the structure and properties of solvent water from the physicochemical properties (mass density, sound velocity, viscosity, and osmolality) of aqueous sucralose solutions; therefore, we concluded that a direct protein-sucralose interaction induced protein destabilization.


Assuntos
Mioglobina , Água , Água/química , Mioglobina/química , Solventes/química , Sacarose/química , Desnaturação Proteica
11.
J Hazard Mater ; 465: 133147, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056266

RESUMO

Sulfonamide antibiotics, a family of broad-spectrum antibiotic drugs, are increasingly used in aquaculture and are frequently detected in aquatic environments. This poses a potential threat to organisms and may cause the evolution of antimicrobial resistance. Therefore, it is important to develop an environmentally friendly and efficient biocatalyst to degrade sulfonamides (SAs) such as sulfadiazine (SD) and sulfathiazole (ST). Here, we realized the direct and efficient degradation of SD and ST using a hydrogen peroxide-dependent artificial catalytic system based on myoglobin (Mb). The arrangements of amino acids at positions 29, 43, 64, and 68 were found to influence catalytic activity. An L29H/H64D/V68I myoglobin mutant showed the best catalytic efficiency (i.e., kcat/Km = 720.42 M-1 s-1) against SD. Next, mutant H64D/V68I showed the best degradation rate against SD (i.e., 91.45 ± 0.16%). Moreover, L29H/H64D/V68I Mb was found to efficiently catalyze ST oxidation (kcat/Km = 670.08 M-1 s-1), while H64D/V68I had the best degradation rate against ST (i.e., 99.45 ± 0.23%). Our results demonstrate that SAs can be efficiently degraded by artificial peroxygenases constructed using a myoglobin scaffold. This therefore provides a simple and economical method for the biodegradation of SD and ST.


Assuntos
Mioglobina , Sulfadiazina , Mioglobina/química , Mioglobina/metabolismo , Antibacterianos , Aminoácidos/metabolismo , Sulfatiazol , Sulfonamidas
12.
Chembiochem ; 25(3): e202300678, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015421

RESUMO

Using myoglobin (Mb) as a model protein, we herein developed a facial approach to modifying the heme active site. A cavity was first generated in the heme distal site by F46 C mutation, and the thiol group of Cys46 was then used for covalently linked to exogenous ligands, 1H-1,2,4-triazole-3-thiol and 1-(4-hydroxyphenyl)-1H-pyrrole-2,5-dione. The engineered proteins, termed F46C-triazole Mb and F46C-phenol Mb, respectively, were characterized by X-ray crystallography, spectroscopic and stopped-flow kinetic studies. The results showed that both the heme coordination state and the protein function such as H2 O2 activation and peroxidase activity could be efficiently regulated, which suggests that this approach might be generally applied to the design of functional heme proteins.


Assuntos
Heme , Mioglobina , Mioglobina/química , Mioglobina/genética , Mioglobina/metabolismo , Domínio Catalítico , Heme/química , Cinética , Conformação Proteica , Compostos de Sulfidrila
13.
Food Chem ; 438: 138053, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38007953

RESUMO

This study focused on non-covalent complex of myoglobin-chlorogenic acid (Mb-CA) and the changes in conformation, oxidation, and microstructure induced by varying concentrations of CA (10-40 µmol/g Mb). Employing molecular docking and dynamics simulations, further insights into the interaction between Mb and CA were obtained. The findings revealed that different CA concentrations enhanced Mb's thermal stability, while diminishing particle size, solubility, and relative content of metmyoglobin (MetMb%). The optimal interaction occurred at 40 µmol/g Mb. Furthermore, CA exhibited static quenching of Mb, with thermodynamic analysis confirming a 1:1 complex formation. These insights deepen our understanding of interaction between Mb and CA, providing valuable clarity.


Assuntos
Ácido Clorogênico , Mioglobina , Mioglobina/química , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Metamioglobina/química
14.
J Inorg Biochem ; 250: 112387, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914583

RESUMO

Most hemoproteins display an all-α-helical fold, showing the classical three on three (3/3) globin structural arrangement characterized by seven or eight α-helical segments that form a sandwich around the heme. Over the last decade, a completely distinct class of heme-proteins called nitrobindins (Nbs), which display an all-ß-barrel fold, has been identified and characterized from both structural and functional perspectives. Nbs are ten-stranded anti-parallel all-ß-barrel heme-proteins found across the evolutionary ladder, from bacteria to Homo sapiens. Myoglobin (Mb), commonly regarded as the prototype of monomeric all-α-helical globins, is involved along with the oligomeric hemoglobin (Hb) in diatomic gas transport, storage, and sensing, as well as in the detoxification of reactive nitrogen and oxygen species. On the other hand, the function(s) of Nbs is still obscure, even though it has been postulated that they might participate to O2/NO signaling and metabolism. This function might be of the utmost importance in poorly oxygenated tissues, such as the eye's retina, where a delicate balance between oxygenation and blood flow (regulated by NO) is crucial. Dysfunction in this balance is associated with several pathological conditions, such as glaucoma and diabetic retinopathy. Here a detailed comparison of the structural, spectroscopic, and functional properties of Mb and Nbs is reported to shed light on the similarities and differences between all-α-helical and all-ß-barrel heme-proteins.


Assuntos
Globinas , Mioglobina , Humanos , Globinas/química , Heme/química , Hemoglobinas/química , Mioglobina/química , Análise Espectral
15.
J Sci Food Agric ; 104(2): 1063-1073, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37743570

RESUMO

BACKGROUND: Myoglobin (MB), a pigmentation protein, can adversely affect the antibacterial activity of carvacrol (CAR) and weaken its bacteriostasis effect. This study aimed to clarify the influence of MB on the antibacterial activity of CAR and ascertain the mechanism involved in the observed influence, especially the interaction between the two compounds. RESULTS: Microbiological analysis indicated that the presence of MB significantly suppressed the antibacterial activity of CAR against Listeria monocytogenes. Ultraviolet-visible spectrometry and fluorescence spectroscopic analysis confirmed the interaction between CAR and MB. The stoichiometric number was determined as ~0.7 via double logarithmic Stern-Volmer equation analysis, while thermodynamic analysis showed that the conjugation of the two compounds occurred as an exothermal reaction (ΔH° = -32.3 ± 11.4 kJ mol-1 and ΔS° = -75 J mol-1 K-1 ). Circular dichroism, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy showed hydrogen bonding in the carvacrol-myoglobin complex (CAR-MB). Molecular docking analysis confirmed that amino acid residues, including GLY80 and HIS82, were most likely to form hydrogen bonds with CAR, while hydrogen bonds represented the main driving force for CAR-MB formation. CONCLUSION: CAR antibacterial activity was significantly inhibited by the presence of MB in the environment due to the notable reduction in the effective concentration of CAR caused by CAR-MB formation. © 2023 Society of Chemical Industry.


Assuntos
Antibacterianos , Mioglobina , Simulação de Acoplamento Molecular , Mioglobina/química , Espectrometria de Fluorescência , Ligação Proteica , Termodinâmica , Antibacterianos/farmacologia , Dicroísmo Circular , Sítios de Ligação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
16.
Nat Commun ; 14(1): 7985, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042860

RESUMO

Hemoproteins have recently emerged as promising biocatalysts for new-to-nature carbene transfer reactions. However, mechanistic understanding of the interplay between productive and unproductive pathways in these processes is limited. Using spectroscopic, structural, and computational methods, we investigate the mechanism of a myoglobin-catalyzed cyclopropanation reaction with diazoketones. These studies shed light on the nature and kinetics of key catalytic steps in this reaction, including the formation of an early heme-bound diazo complex intermediate, the rate-determining nature of carbene formation, and the cyclopropanation mechanism. Our analyses further reveal the existence of a complex mechanistic manifold for this reaction that includes a competing pathway resulting in the formation of an N-bound carbene adduct of the heme cofactor, which was isolated and characterized by X-ray crystallography, UV-Vis, and Mössbauer spectroscopy. This species can regenerate the active biocatalyst, constituting a non-productive, yet non-destructive detour from the main catalytic cycle. These findings offer a valuable framework for both mechanistic analysis and design of hemoprotein-catalyzed carbene transfer reactions.


Assuntos
Metano , Mioglobina , Mioglobina/química , Catálise , Metano/química , Heme
17.
Molecules ; 28(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067466

RESUMO

To date, most research on amyloid aggregation has focused on describing the structure of amyloids and the kinetics of their formation, while the conformational stability of fibrils remains insufficiently explored. The aim of this work was to investigate the effect of amino acid substitutions on the stability of apomyoglobin (ApoMb) amyloids. A study of the amyloid unfolding of ApoMb and its six mutant variants by urea has been carried out. Changes in the structural features of aggregates during unfolding were recorded by far-UV CD and native electrophoresis. It was shown that during the initial stage of denaturation, amyloids' secondary structure partially unfolds. Then, the fibrils undergo dissociation and form intermediate aggregates weighing approximately 1 MDa, which at the last stage of unfolding decompose into 18 kDa monomeric unfolded molecules. The results of unfolding transitions suggest that the stability of the studied amyloids relative to the intermediate aggregates and of the latter relative to unfolded monomers is higher for ApoMb variants with substitutions that increase the hydrophobicity of the residues. The results presented provide a new insight into the mechanism of stabilization of protein aggregates and can serve as a base for further investigations of the amyloids' stability.


Assuntos
Apoproteínas , Mioglobina , Substituição de Aminoácidos , Mioglobina/química , Estrutura Secundária de Proteína , Apoproteínas/química , Amiloide/genética , Dobramento de Proteína , Desnaturação Proteica
18.
Biochemistry (Mosc) ; 88(11): 1905-1909, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105207

RESUMO

In this paper the answer to O. B. Ptitsyn's question "What is the role of conserved non-functional residues in apomyoglobin" is presented, which is based on the research results of three laboratories. The role of conserved non-functional apomyoglobin residues in formation of native topology in the molten globule state of this protein is revealed. This fact allows suggesting that the conserved non-functional residues in this protein are indispensable for fixation and maintaining main elements of the correct topology of its secondary structure in the intermediate state. The correct topology is a native element in the intermediate state of the protein.


Assuntos
Apoproteínas , Dobramento de Proteína , Apoproteínas/genética , Apoproteínas/química , Mioglobina/química , Estrutura Secundária de Proteína , Conformação Proteica
19.
Anal Chem ; 95(48): 17525-17532, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37997939

RESUMO

Native electrospray ionization mass spectrometry (ESI-MS) has emerged as a potent tool for examining the native-like structures of macromolecular complexes. Despite its utility, the predominant "buffer" used, ammonium acetate (AmAc) with pKa values of 4.75 for acetic acid and 9.25 for ammonium, provides very little buffering capacity within the physiological pH range of 7.0-7.4. ESI-induced redox reactions alter the pH of the liquid within the ESI capillary. This can result in protein unfolding or weakening of pH-sensitive interactions. Consequently, the discovery of volatile, ESI-compatible buffers, capable of effectively maintaining pH within a physiological range, is of high importance. Here, we demonstrate that 2,2-difluoroethylamine (DFEA) and 2,2,2-trifluoroethylamine (TFEA) offer buffering capacity at physiological pH where AmAc falls short, with pKa values of 7.2 and 5.5 for the conjugate acids of DFEA and TFEA, respectively. Native ESI-MS experiments on model proteins cytochrome c and myoglobin electrosprayed with DFEA and TFEA demonstrated the preservation of noncovalent protein-ligand complexes in the gas phase. Protein stability assays and collision-induced unfolding experiments further showed that neither DFEA nor TFEA destabilized model proteins in solution or in the gas phase. Finally, we demonstrate that multisubunit protein complexes such as alcohol dehydrogenase and concanavalin A can be studied in the presence of DFEA or TFEA using native ESI-MS. Our findings establish DFEA and TFEA as new ESI-compatible neutral pH buffers that promise to bolster the use of native ESI-MS for the analysis of macromolecular complexes, particularly those sensitive to pH fluctuations.


Assuntos
Mioglobina , Espectrometria de Massas por Ionização por Electrospray , Mioglobina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Concentração de Íons de Hidrogênio , Etilaminas , Substâncias Macromoleculares , Soluções Tampão
20.
J Agric Food Chem ; 71(46): 17485-17493, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37943570

RESUMO

Myoglobin is the main factor responsible for muscle pigmentation in tuna; muscle color depends upon changes in the oxidative state of myoglobin. The tuna industry has reported muscle greening after thermal treatment involving metmyoglobin (MetMb), trimethylamine oxide (TMAO), and free cysteine (Cys). It has been proposed that this pigmentation change is due to a disulfide bond between a unique cysteine residue (Cys10) found in tuna MetMb and free Cys. However, no evidence has been given to confirm that this reaction occurs. In this review, new findings about the mechanism of this greening reaction are discussed, showing evidence of how free radicals produced from Cys oxidation under thermal treatment participate in the greening of tuna and horse muscle during thermal treatment. In addition, the reaction conditions are compared to other green myoglobins, such as sulfmyoglobin, verdomyoglobin, and cholemyoglobin.


Assuntos
Cisteína , Mioglobina , Animais , Cavalos , Mioglobina/química , Cisteína/química , Metamioglobina/química , Oxirredução , Músculos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...